
Computer Science & Engineering

Department of CSE

Laboratory Manual

Course: B.Tech.

Year & Semester: III – I

Class: CSE

Subject: DevOps Lab Manual

Regulation: R22

 BALAJI INSTITUTE OF TECHNOLOGY AND SCIENCE (AUTONOMOUS)

B.Tech (Department of Computer Science & Engineering)

DEVOPS LAB

Course Outcomes:

• Understand the need of DevOps tools.
• Understand the environment for a software application development.
• Apply different project management, integration and development tools.
• Apply Docker Commands for content management.
• Use Selenium tool for automated testing of application.

 List of Experiments:

1. Write code for a simple user registration form for an event.

2. Explore Git and GitHub commands.

3. Practice Source code management on GitHub. Experiment with the source

code in exercise 1.

4. Jenkins installation and setup, explore the environment.

5. Demonstrate continuous integration and development using Jenkins.

6. Explore Docker commands for content management.

7. Develop a simple containerized application using Docker.

8. Integrate Kubernetes and Docker

9. Automate the process of running containerized application for exercise 7 using

Kubernetes.

10. Install and Explore Selenium for automated testing.

11. Write a simple program in JavaScript and perform testing using Selenium.

12. Develop test cases for the above containerized application using selenium.

1. Write code for a simple user registration form for an event.

Step 1:

 Install Python from http://python.org
 Open powershell in windows
 Install Flask and MySQL with following commands

o pip install flask
o pip install flask-mysqldb

Step 2:

 Install xampp in windows
 Run xampp control panel then run apache and mysql
 Create database “mydb” in http://localhost/phpmyadmin
 Create a table

CREATE TABLE `user` (

 `userid` int(11) NOT NULL,

 `name` varchar(100) NOT NULL,

 `email` varchar(100) NOT NULL,

 `password` varchar(255) NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

ALTER TABLE `user`

 ADD PRIMARY KEY (`userid`);

Step 3:

 Create a project (in powershell)
>md Register_Login

 Change to Project
>cd Register_Login

 Code . (it opens VS Code)

Step 4:

 Create app.py and write below code in the file
 Create templates folder under project
 Create register.html, login.html and user.html
 Write below code in respective fles
 Project Structure:

app.py

from flask import Flask, render_template, request, redirect, url_for, session

from flask_mysqldb import MySQL

import MySQLdb.cursors

import re

app = Flask(__name__)

app.secret_key = 'xyzsdfg'

app.config['MYSQL_HOST'] = 'localhost'

app.config['MYSQL_USER'] = 'root'

app.config['MYSQL_PASSWORD'] = ''

app.config['MYSQL_DB'] = 'mydb'

mysql = MySQL(app)

@app.route('/')

@app.route('/login', methods =['GET', 'POST'])

def login():

 mesage = ''

 if request.method == 'POST' and 'email' in request.form and 'password' in
request.form:

 email = request.form['email']

 password = request.form['password']

 cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)

 cursor.execute('SELECT * FROM user WHERE email = % s AND password = % s',
(email, password,))

 user = cursor.fetchone()

 if user:

 session['loggedin'] = True

 session['userid'] = user['userid']

 session['name'] = user['name']

 session['email'] = user['email']

 mesage = 'Logged in successfully !'

 return render_template('user.html', mesage = mesage)

 else:

 mesage = 'Please enter correct email / password !'

 return render_template('login.html', mesage = mesage)

@app.route('/logout')

def logout():

 session.pop('loggedin', None)

 session.pop('userid', None)

 session.pop('email', None)

 return redirect(url_for('login'))

@app.route('/register', methods =['GET', 'POST'])

def register():

 mesage = ''

 if request.method == 'POST' and 'name' in request.form and 'password' in
request.form and 'email' in request.form :

 userName = request.form['name']

 password = request.form['password']

 email = request.form['email']

 cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)

 cursor.execute('SELECT * FROM user WHERE email = % s', (email,))

 account = cursor.fetchone()

 if account:

 mesage = 'Account already exists !'

 elif not re.match(r'[^@]+@[^@]+\.[^@]+', email):

 mesage = 'Invalid email address !'

 elif not userName or not password or not email:

 mesage = 'Please fill out the form !'

 else:

 cursor.execute('INSERT INTO user VALUES (NULL, % s, % s, % s)', (userName,
email, password,))

 mysql.connection.commit()

 mesage = 'You have successfully registered !'

 elif request.method == 'POST':

 mesage = 'Please fill out the form !'

 return render_template('register.html', mesage = mesage)

if __name__ == "__main__":

 app.run()

login.html:

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>User Login Form</title>

<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">

</head>

<body>

<div class="container">

 <h2>User Login</h2>

 <form action="{{ url_for('login') }}" method="post">

 {% if mesage is defined and mesage %}

 <div class="alert alert-warning">{{ mesage }}</div>

 {% endif %}

 <div class="form-group">

 <label for="email">Email:</label>

 <input type="email" class="form-control" id="email"
name="email" placeholder="Enter email" name="email">

 </div>

 <div class="form-group">

 <label for="pwd">Password:</label>

 <input type="password" class="form-control" id="password"
name="password" placeholder="Enter password" name="pswd">

 </div>

 <button type="submit" class="btn btn-primary">Login</button>

 <p class="bottom">Dont't have an account? <a class="bottom"
href="{{url_for('register')}}"> Register here</p>

 </form>

</div>

</body>

</html>

rgister.html:

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>User Registeration Form</title>

<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">

</head>

<body>

<div class="container">

 <h2>User Registration</h2>

 <form action="{{ url_for('register') }}" method="post">

 {% if mesage is defined and mesage %}

 <div class="alert alert-warning">{{ mesage }}</div>

 {% endif %}

 <div class="form-group">

 <label for="name">Name:</label>

 <input type="text" class="form-control" id="name" name="name"
placeholder="Enter name" name="name">

 </div>

 <div class="form-group">

 <label for="email">Email:</label>

 <input type="email" class="form-control" id="email"
name="email" placeholder="Enter email" name="email">

 </div>

 <div class="form-group">

 <label for="pwd">Password:</label>

 <input type="password" class="form-control" id="password"
name="password" placeholder="Enter password" name="pswd">

 </div>

 <button type="submit" class="btn btn-primary">Register</button>

 <p class="bottom">Already have an account? <a class="bottom"
href="{{url_for('login')}}"> Login here</p>

 </form>

</div>

</body>

</html>

user.html:

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>User Account</title>

<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">

</head>

<body>

<div class="container">

 <div class="row">

 <h1>User Profile</h1>

 </div>

 <div class="row">

 Logged in : {{session.name}} |
Logout

 </div>

 <div class="row">

 <h2>Welcome to the user profile page...</h2>

 </div>

</div>

</body>

</html>

Step5:

 Select app.py then run it.
 Open http://127.0.0.1:5000/ in browser

Output:

2. Explore Git and GitHub commands.

Step 1:

 Download gibash from https://git-scm.com/
 Install gitbash

Step 2:

 Create an account with https://github.com/

 Create a repository

 Create SSH key in gitbash

 Open and copy content of id_rsa from .ssh folder in user folder

 Paste the content in key field in SSH keys/ Add new

Step 3:

 Do following git commands in gitbash

3. Practice Source code management on GitHub. Experiment with the source code
written in exercise 1.

Do the following git commends

Experiment 4: Jenkins installation and setup, explore the environment

Prerequisites:

Before you proceed to install Jenkins in your windows system, there are some
prerequisites for Jenkins to install Jenkins in your computer.

Hardware requirements:

 You need minimum 256 MB of RAM in your computer or laptop to install
Jenkins

 You need at least 1 GB of space in your hard drive for Jenkins.

Software Requirements:

 Since Jenkins runs on Java, you need either latest version of Java
Development Kit (JDK)11 above or Java Runtime Environment (JRE).

Release Types

Jenkins releases two types of versions based on the organization needs.

 Long-term support release
 Weekly release

Long term support release (LTS) :

Long-term support releases are available every 12 weeks. They are stable and are
widely tested. This release is intended for end users.

Weekly release:

Weekly releases are made available every week by fixing bugs in its earlier
version. These releases are intended towards plugin developers.

We will use the LTS release though the process remains the same for Weekly
release.

How to Download Jenkins?

Following steps should be followed so that to install Jenkins successfully:

Step 1) Got to https://www.jenkins.io/download/ and select the platform. In our
case Windows

Step 2) Go to download location from local computer and unzip the
downloaded package. Double-click on unzipped jenkins.msi. You can also Jenkin
using a WAR (Web application ARchive) but that is not recommended.

Step 3) In the Jenkin Setup screen, click Next.

Step 4) Choose the location where you want to have the Jenkins instance
installed (default location is C:\Program Files (x86)\Jenkins), then click
on Next button.

Step 5)Click on the Install button.

Step 6) Once install is complete, click Finish.

(Optional) Step 7) During the installation process an info panel may pop-up to
inform the user that for a complete setup, the system should be rebooted at the
end of the current installation. Click on OK button when the Info panel is
popping-up:

How to Unblock Jenkins?

After completing the Jenkins installation phase, you should proceed further and
start its configuration. Next steps will guide you how you can unblock Jenkins
application:

Step 1) After completing the Jenkins installation process, a browser tab will pop-
up asking for the initial Administrator password. To access Jenkins, you need to
go to browse the following path in your web browser.
http://localhost:9000

If you can access the above URL, then it confirms that Jenkins is successfully
installed in your system.

java -jar jenkins.war --httpPort=9000

Step 2) The initial Administrator password should be found under the Jenkins
installation path (set at Step 4 in Jenkins Installation).

Step 3) Open the highlighted file and copy the content of
the initialAdminPassword file.

Step 4) Paste the password it into browser’s pop-up tab
(http://localhost:9000/login?form=%2F) and click on Continue button.

Customize Jenkins

You can also customize your Jenkins environment by below-given steps:

Step 1) Click on the “Install suggested plugins button” so Jenkins will retrieve
and install the essential plugins

Jenkins will start to download and install all the necessary plugins needed to
create new Jenkins Jobs.

Note: You can choose the Option “Select Plugins to Install” and select the
plugins you want to install

Step 2) After all suggested plugins were installed, the “Create First Admin User”
panel will show up. Fill all the fields with desired account details and hit the “Save
and Finish” button.

Step 3) Once you have filled the above data, finally it will ask for URL
information where you can configure the default instance path for Jenkins. Leave it
as it is to avoid any confusions later. However, if another application is already
using 8080 port, you can use another port for Jenkins and finally save the settings,
and you are done with installation of Jenkins. Hit the “Save and Continue”
button:

Congratulations! We have successfully installed a new Jenkins Server. Hit the
“Start using Jenkins” button.

Below you can find the Jenkins instance up and run, ready to create first Jenkins
jobs:

EXPERIMENT NO: 5. Demonstrate continuous integration and development using

Jenkins.

Aim: Demonstrate continuous integration and development using Jenkins.

DESCRIPTION

Continuous Integration (CI) and Continuous Development (CD) are important practices in

software development that can be achieved using Jenkins. Here's an example of how you can

demonstrate CI/CD using Jenkins:

Create a simple Java application:

• Create a simple Java application that you want to integrate with Jenkins.

• The application should have some basic functionality, such as printing "Hello

World" or performing simple calculations.

Commit the code to a Git repository:

• Create a Git repository for the application and commit the code to the repository.

• Make sure that the Git repository is accessible from the Jenkins server.

Create a Jenkins job:

• Log in to the Jenkins web interface and create a new job.

• Configure the job to build the Java application from the Git repository.

• Specify the build triggers, such as building after every commit to the repository.

Build the application:

• Trigger a build of the application using the Jenkins job.

• The build should compile the code, run any tests, and produce an executable jar

file.

Monitor the build:

• Monitor the build progress in the Jenkins web interface.

• The build should show the build log, test results, and the status of the build.

Deploy the application:

• If the build is successful, configure the Jenkins job to deploy the application to

a production environment.

• The deployment could be as simple as copying the jar file to a

production server or using a more sophisticated deployment process, such as using a

containerization technology like Docker.

Repeat the process:

• Repeat the process for subsequent changes to the application.

• Jenkins should automatically build and deploy the changes to the production

environment.

This is a basic example of how you can use Jenkins to demonstrate CI/CD in software

development. In a real-world scenario, you would likely have more complex requirements,

such as multiple environments, different types of tests, and a more sophisticated deployment

process. However, this example should give you a good starting point for using Jenkins for

CI/CD in your software development projects.

DEVOPS LAB MANUAL

EXPERIMENT NO.: 6. Explore Docker commands for content management.

AIM: Explore Docker commands for content management.

DESCRIPTION

Docker is a containerization technology that is widely used for managing application

containers. Here are some commonly used Docker commands for content management:

• Docker run: Run a command in a new container.
For example: $ docker run --name mycontainer -it ubuntu:16.04 /bin/bash
This command runs a new container based on the Ubuntu 16.04 image
and starts a shell session in the container.

• Docker start: Start one or more stopped containers.
For example: $ docker start mycontainer

This command starts the container named "mycontainer".

• Docker stop: Stop one or more running containers.

• For example: $ docker stop mycontainer

This command stops the container named "mycontainer".

• Docker rm: Remove one or more containers.
• For example: $ docker rm mycontainer

This command removes the container named "mycontainer".

• Docker ps: List containers.
For example: $ docker ps

This command lists all running containers.

• Docker images: List images.
For example: $ docker images

This command lists all images stored locally on the host.

• Docker pull: Pull an image or a repository from a registry.
For example: $ docker pull ubuntu:16.04

This command pulls the Ubuntu 16.04 image from the Docker Hub
registry.\

• Docker push: Push an image or a repository to a registry.
For example: $ docker push myimage

This command pushes the image named "myimage" to the Docker Hub
registry.

• Build the Docker image:

Run the following command to build the Docker image:

$ docker build -t myimage .

This command builds a new Docker image using the Dockerfile and tags

These are some of the basic Docker commands for managing containers and images. There

are many other Docker commands and options that you can use for more advanced use

cases, such as managing networks, volumes, and configuration.

EXPERIMENT NO.: 7. Develop a simple containerized application using Docker

AIM: Develop a simple containerized application using Docker DESCRIPTION

Here's an example of how you can develop a simple containerized application using

Docker in the following 5 steps:

Step1: Choose an application

Step2: Write a Dockerfile

Step3: Build the Docker image

Step4: Run the Docker container

Step5: Verify the output

Choose an application:

• Choose a simple application that you want to containerize.
 For example, a Python script that prints "Hello World".

Write a Dockerfile:

• Create a file named "Dockerfile" in the same directory as the application.

In the Dockerfile, specify the base image, copy the application into the container, and

specify the command to run the application. Here's an example Dockerfile for a
Python script:

Build the Docker image:

Run the following command to build the Docker image:

This command builds a new Docker image using the Dockerfile and tags the image

with the name "myimage”.

 Run the Docker container:

Run the following command to start a new container based on the image:
$

This command starts a new container named "mycontainer" based on the
"myimage" image and runs the Python script inside the container.

Verify the output:

Run the following command to verify the output of the container:

This command displays the logs of the container and should show the "Hello World"

output.

This is a simple example of how you can use Docker to containerize an application. In

a real-world scenario, you would likely have more complex requirements, such as

running multiple containers, managing network connections, and persisting data.

However, this example should give you a good starting point for using Docker to

containerize your applications.

EXPERIMENT NO.: 8. Integrate Kubernetes and Docker

AIM: Integrate Kubernetes and Docker

DESCRIPTION:

Kubernetes and Docker are both popular technologies for managing containers, but

they are used for different purposes. Kubernetes is an orchestration platform that

provides a higher-level abstractions for managing containers, while Docker is a

containerization technology that provides a lower-level runtime for containers.

To integrate Kubernetes and Docker, you need to use Docker to build and package your

application as a container image, and then use Kubernetes to manage and orchestrate

the containers.

Here's a high-level overview of the steps to integrate Kubernetes and Docker:

Build a Docker image:

Use Docker to build a Docker image of your application. You can use a Dockerfile to

specify the base image, copy the application into the container, and specify the

command to run the application.

• Push the Docker image to a registry:
Push the Docker image to a container registry, such as Docker Hub or Google

Container Registry, so that it can be easily accessed by Kubernetes. Deploy the

Docker image to a Kubernetes cluster:

Use Kubernetes to deploy the Docker image to a cluster. This involves creating a

deployment that specifies the number of replicas and the image to be used, and

creating a service that exposes the deployment to the network.

Monitor and manage the containers:
Use Kubernetes to monitor and manage the containers. This includes scaling the

number of replicas, updating the image, and rolling out updates to the containers.

• Continuously integrate and deploy changes:

Use a continuous integration and deployment (CI/CD) pipeline to automatically build,

push, and deploy changes to the Docker image and the Kubernetes cluster.

This makes it easier to make updates to the application and ensures that the

latest version is always running in the cluster.

By integrating Kubernetes and Docker, you can leverage the strengths of both

technologies to manage containers in a scalable, reliable, and efficient manner

ERIMENT NO.: 9. Automate the process of running containerized application
developed in exercise 7 using Kubernetes

AIM: Automate the process of running containerized application developed in

exercise 7 using Kubernetes

DESCRIPTION

To automate the process of running the containerized application developed in

exercise 7 using Kubernetes, you can follow these steps:

• Create a Kubernetes cluster:

Create a Kubernetes cluster using a cloud provider, such as Google Cloud or

Amazon Web Services, or using a local installation of Minikube.

• Push the Docker image to a registry:

Push the Docker image of your application to a container registry, such as Docker

Hub or Google Container Registry.

• Create a deployment:

Create a deployment in Kubernetes that specifies the number of replicas and the

Docker image to use. Here's an example of a deployment YAML file:

apiVersion: apps/v1

kind: Deployment

metadata:

name: myapp spec:
replicas: 3

selector:

matchLabels:

app: myapp template:

 metadata:

 labels:

app: myapp spec:

containers:

- name: myapp

image: myimage

ports:

- containerPort: 80

• Create a service:

Create a service in Kubernetes that exposes the deployment to the network. Here's

an example of a service YAML file:

apiVersion: v1 kind: Service metadata:

name: myapp-service

spec:

selector:

app: myapp ports:

- name: http

port: 80

targetPort: 80

type: ClusterIP

• Apply the deployment and service to the cluster:

Apply the deployment and service to the cluster using the kubectl command- line

tool. For example:

$ kubectl apply -f deployment.yaml

$ kubectl apply -f service.yaml

• Verify the deployment:

Verify the deployment by checking the status of the pods and the service. For example:

$ kubectl get pods

$ kubectl get services

This is a basic example of how to automate the process of running a containerized

application using Kubernetes. In a real-world scenario, you would likely have more

complex requirements, such as managing persistent data, scaling, and rolling updates,

but this example should give you a good starting point for using Kubernetes to manage

your containers.

Steps to work with selenium

Step 1:

Download and Install Java 17(recommended) from the oracle website

https://download.oracle.com/java/17/archive/jdk-17.0.10_windows-x64_bin.msi

2.Set path for java in environment variables

Gotostart and type edit environment variables and the below window will be

opened for you

Click on Environment variables and select the path variable and edit it as shown

below also set the JAVA_HOME variable.

https://download.oracle.com/java/17/archive/jdk-17.0.10_windows-x64_bin.msi

Step 2:

Download and Install Eclipse IDE

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/2024-

06/R/eclipse-inst-jre-win64.exe

Step 3:

Download Selenium Web Driver for Java

https://www.selenium.dev/downloads/

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/2024-06/R/eclipse-inst-jre-win64.exe
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/2024-06/R/eclipse-inst-jre-win64.exe
https://www.selenium.dev/downloads/

Also download Selenium Server as show below from the same link

Download Chrome Driver from the below link

https://storage.googleapis.com/chrome-for-testing-

public/126.0.6478.126/win64/chromedriver-win64.zip

https://storage.googleapis.com/chrome-for-testing-public/126.0.6478.126/win64/chromedriver-win64.zip
https://storage.googleapis.com/chrome-for-testing-public/126.0.6478.126/win64/chromedriver-win64.zip

Step 4:

Create a folder Selenium in the c:\ drive and unzip all the above softwares and

paste into it as shown below

Step 5:

Now Open Eclipse and Take a Java Project SeleniumDemo as shown below

Add a class Test.java to the project on right clicking it in the project explorer

Rightclick on the SeleniumDemo project and goto Build Path and select

configure build path and you can see the below screen

In the libraries tab select the class path and add External JARs and select all the

jar files visible in the location and click open

Also Add Selenium-Server jar file as shown below

After adding the Selenium jar files you will be able to see the Referenced

Libraries as shown below

Write the below code in Test.java

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

public class Test {

public static void main(String[] args) {
System.setProperty("webdriver.chrome.driver",

"C:\\Selenium\\chromedriver-win64\\chromedriver.exe");
WebDriver driver=new ChromeDriver();
driver.get("http://www.google.com");
System.out.println(driver.getTitle());
driver.quit();

}
}

%22http:/www.google.com%22

Run and see the below output. The website opens in the
browser

As we were trying to read the title of the page you can see the output read title of

the website.

Experiment 11: Write a simple program in JavaScript and perform testing using

Selenium.

Output

12. Develop test cases for the above containerized application using selenium

Add JavaScriptTest.java class to the earlier taken SeleniumDemo project in eclipseby right clicking on

the project folder in project explorer

And write the below code

Program :

Run the code and see the below output

	EXPERIMENT NO.: 6. Explore Docker commands for content management.
	DESCRIPTION
	AIM: Develop a simple containerized application using Docker DESCRIPTION
	DESCRIPTION:
	ERIMENT NO.: 9. Automate the process of running containerized application developed in exercise 7 using Kubernetes
	DESCRIPTION (1)
	Steps to work with selenium
	Step 2:
	Step 3:
	Step 4:
	Step 5:

